475 research outputs found

    Not Always Sparse: Flooding Time in Partially Connected Mobile Ad Hoc Networks

    Full text link
    In this paper we study mobile ad hoc wireless networks using the notion of evolving connectivity graphs. In such systems, the connectivity changes over time due to the intermittent contacts of mobile terminals. In particular, we are interested in studying the expected flooding time when full connectivity cannot be ensured at each point in time. Even in this case, due to finite contact times durations, connected components may appear in the connectivity graph. Hence, this represents the intermediate case between extreme cases of fully mobile ad hoc networks and fully static ad hoc networks. By using a generalization of edge-Markovian graphs, we extend the existing models based on sparse scenarios to this intermediate case and calculate the expected flooding time. We also propose bounds that have reduced computational complexity. Finally, numerical results validate our models

    Dynamic control of Coding in Delay Tolerant Networks

    Get PDF
    Delay tolerant Networks (DTNs) leverage the mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease message delivery delay, the information to be transmitted is replicated in the network. We study replication mechanisms that include Reed-Solomon type codes as well as network coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows us to compute the probability of successful delivery. We study the effect of coding on the performance of the network while optimizing parameters that govern routing

    Differential Games of Competition in Online Content Diffusion

    Get PDF
    Access to online contents represents a large share of the Internet traffic. Most such contents are multimedia items which are user-generated, i.e., posted online by the contents' owners. In this paper we focus on how those who provide contents can leverage online platforms in order to profit from their large base of potential viewers. Actually, platforms like Vimeo or YouTube provide tools to accelerate the dissemination of contents, i.e., recommendation lists and other re-ranking mechanisms. Hence, the popularity of a content can be increased by paying a cost for advertisement: doing so, it will appear with some priority in the recommendation lists and will be accessed more frequently by the platform users. Ultimately, such acceleration mechanism engenders a competition among online contents to gain popularity. In this context, our focus is on the structure of the acceleration strategies which a content provider should use in order to optimally promote a content given a certain daily budget. Such a best response indeed depends on the strategies adopted by competing content providers. Also, it is a function of the potential popularity of a content and the fee paid for the platform advertisement service. We formulate the problem as a differential game and we solve it for the infinite horizon case by deriving the structure of certain Nash equilibria of the game

    Optimal curing policy for epidemic spreading over a community network with heterogeneous population

    Full text link
    The design of an efficient curing policy, able to stem an epidemic process at an affordable cost, has to account for the structure of the population contact network supporting the contagious process. Thus, we tackle the problem of allocating recovery resources among the population, at the lowest cost possible to prevent the epidemic from persisting indefinitely in the network. Specifically, we analyze a susceptible-infected-susceptible epidemic process spreading over a weighted graph, by means of a first-order mean-field approximation. First, we describe the influence of the contact network on the dynamics of the epidemics among a heterogeneous population, that is possibly divided into communities. For the case of a community network, our investigation relies on the graph-theoretical notion of equitable partition; we show that the epidemic threshold, a key measure of the network robustness against epidemic spreading, can be determined using a lower-dimensional dynamical system. Exploiting the computation of the epidemic threshold, we determine a cost-optimal curing policy by solving a convex minimization problem, which possesses a reduced dimension in the case of a community network. Lastly, we consider a two-level optimal curing problem, for which an algorithm is designed with a polynomial time complexity in the network size.Comment: to be published on Journal of Complex Network

    Forward correction and fountain codes in delay tolerant networks

    Get PDF
    Abstract—Delay tolerant Ad-hoc Networks make use of mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease delivery delay, the information that needs to be delivered is replicated in the network. Our objective in this paper is to study replication mechanisms that include coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows to quantify tradeoffs between resources and performance measures (energy and delay). We study the effect of coding on the performance of the network while optimizing parameters that govern routing. Our results, based on fluid approximations, are compared to simulations which validate the model 1. Index Terms—Forward correction, fountain codes, delay tolerant networks I

    Emergence of Equilibria from Individual Strategies in Online Content Diffusion

    Get PDF
    Social scientists have observed that human behavior in society can often be modeled as corresponding to a threshold type policy. A new behavior would propagate by a procedure in which an individual adopts the new behavior if the fraction of his neighbors or friends having adopted the new behavior exceeds some threshold. In this paper we study the question of whether the emergence of threshold policies may be modeled as a result of some rational process which would describe the behavior of non-cooperative rational members of some social network. We focus on situations in which individuals take the decision whether to access or not some content, based on the number of views that the content has. Our analysis aims at understanding not only the behavior of individuals, but also the way in which information about the quality of a given content can be deduced from view counts when only part of the viewers that access the content are informed about its quality. In this paper we present a game formulation for the behavior of individuals using a meanfield model: the number of individuals is approximated by a continuum of atomless players and for which the Wardrop equilibrium is the solution concept. We derive conditions on the problem's parameters that result indeed in the emergence of threshold equilibria policies. But we also identify some parameters in which other structures are obtained for the equilibrium behavior of individuals
    • …
    corecore